技术文章列表

  • 城市垃圾填埋场渗滤液废水处理工艺改良

    城市垃圾填埋场渗滤液废水处理工艺改良城市垃圾填埋场渗滤液是城市垃圾进行卫生填埋时,垃圾腐化过程中产生的内源水和以外來水份形成的沁出液体,其成分复杂,处理难度很大。通过分析调查得知:在填埋过程中渗滤液的成分极不稳定。NH -N浓度变化大可以从低于100mg/L上升到5000mg/L BOD等有机物却呈下降趋势,针对不同时期的渗滤液的不同成分的特点,并结合当今国内外对垃圾渗滤液的最新处理工艺,设计使用曝气吹脱法对氨氮等进行处理,厌氧好氧相结合的方法对渗滤液的COD、BOD等进行处理。本设计的工艺改良方法更适合南方城市垃圾填埋场的渗滤液的处理。氨氮的去除率能够达到45%,BOD5的去除率能够达到90%,出水水质能够达到国家生活垃圾渗滤液的二级排放标准,并且该工艺能够降低处理成本,降低基建费用。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。随着我国城市化进程的不断加快,城市规模的不断扩大,城市人口的不断曾多,城市垃圾量和渗滤液处理难度也随之增多。以前大多数城市垃圾处理场按照建设部《城市生活垃圾卫生填埋技术标准》(CJJ17-88)设计。已经于2005以前年建成投产,至今已运行了10多年,已不能满足日益复杂的垃圾填埋处理污染控制要求。原来配套的渗滤液处理的工艺设备也不能满足渗滤液成分日益复杂的处理要求,现在急需改良处理工艺以提高城市垃圾填埋场渗滤液的处理程度。众所周知垃圾处理场渗滤液是一种成分复杂且随”场龄”变化的高浓度有机废水.可生化性差,几种不同的渗滤液合并处理,任何一种单独的处理方法都难以达到处理要求,特此采取了生化法和物化法相结合的垃圾渗滤液处理方法.此方法能够有效的处理渗滤液并达到国家排放标准。本采用韩国韩钠公司的最新专利AMT技术。本设计以宜昌市城市垃圾处理场渗滤液处理工程为参考,根据宜昌市垃圾处理场提供的资料,综合查阅相关的书籍,并结合国内外的相关技术前延的研究资料,对渗滤液污水处理厂的设备进行改良工艺设计。渗滤液处理工艺设计过程中应遵循下列原则:使处理后的渗滤液达标排放,以使环境不受污染;渗滤液处理工艺方案在达到治理要求的前提下应优先选择基建投资和运行费用少的,运行管理方便的稳定可靠工艺,在保证处理效果的前提下尽可能地降低运行成本。目前国内外最流行的是厌氧联合处理法,不足之处就是忽略了超高浓度氨氮的影响,使得高氨氮对生物活性菌处理效能产生严重的抑制作用,影响出水,整体处理效果不佳.若出现C/N<3的情况,将造成营养比例严重失调,影响后续处理效果的稳定性,另外高浓度的游离氨也会降低了微生物活性菌的活性,严重影响了菌种的成活率。

    2019-01-18

  • 污水厂异常进水对溶解氧影响特征经验总结

    污水厂异常进水对溶解氧影响特征经验总结市政污水处理厂进水通常以生活污水为主,进水水质较为稳定、生化性好,易于处理,但是偶有进水异常情况发生,如高浓进水、油、重金属等,以处理生活污水为主的市政污水厂一般没有设计专门的应对设施,会对稳定达标运行构成一定威胁。目前关于工业废水处理的研究较多[1-4],而关于市政污水厂突发性异常进水的研究较少[5]。本文以常见的渗滤液、油、重金属进水为例,对山东省某市政污水厂突发性异常进水对DO的影响特征进行了经验总结,为异常进水的及时发现和甄别提供参考,以便采取应对措施。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。1异常进水影响特征1.1含油进水本厂采用推流式A/A/O工艺,好氧区停留时间为8h,沿程均匀取8个点位检测DO含量。在进水含油情况下(170mg/L),DO较正常值偏低,好氧区前段较为明显,这种差异在好氧区后段逐渐减弱,如图1所示。根据出水在线检测结果,COD和NH3-N浓度略有升高,这说明活性污泥受油的影响COD和NH3-N的降解速率降低,此时耗氧量降低,应当表现出DO升高的现象,这与DO的检测结果相反。推测可能的原因为,油膜一方面影响了DO向污泥絮体内部的传递,降低了COD和NH3-N的降解速率;另一方面在DO检测探头表面也形成了油膜,影响了DO的传递,造成了DO检测结果的失准。这种影响随着反应的延续,油类物质逐渐迁移转化而消除。1.2重金属进水在进水含重金属(以Cu为例,45mg/L)情况下,好氧区前段DO较正常值偏高,而在好氧区的后段则较正常值偏低,如图1所示。重金属(Cu)会对污泥活性产生毒性抑制,微生物活性降低,因此在好氧区的前段耗氧量降低,DO较正常值偏高。由于微生物降解速率的降低,在好氧区后段COD和NH3-N仍有较高的含量,造成好氧区后段需氧量较大,DO较正常值偏低。1.3高浓进水本厂设计进水COD为500mg/L,在运行过程中经常有进水超负荷现象,700-800mg/L,甚至瞬时超1000mg/L。在高浓进水情况下,好氧区整体DO较正常情况偏低,如图1所示。高浓进水对DO的影响主要是因为污染物浓度的升高增大了耗氧量,DO较正常值偏低,此时应增大供氧量。2进水类型甄别及应对措施根据DO的变化特征,并结合进水在线COD检测数据,可以对异常进水类型进行初步的判断,并及时采取应对措施,如表1所示。在运行过程中往往还有复合型进水情况,如高浓进水并伴有重金属的情况,处置难度大,需根据具体情况进行详细分析。3结语突发性异常进水是市政污水处理厂运行过程中普遍存在的问题,会对工艺运行造成较大冲击。通过总结不同类型异常进水对DO的影响特征,并结合进水在线COD检测结果可以对进水类型进行快速的初步判断,以便采取相应的应急处置措施,把风险降到最低。

    2019-01-10

  • 污水站冬季运行4大注意事项

    污水站冬季运行4大注意事项水温的降低或过低很可能使得污水站在处理污水的过程中出现一系列的问题,今天我们将《污水站冬季运行4大注意事项》再发一次,提醒各位站长及时做好相应的措施。天气越来越冷,北方很多地方都已经下雪,温度都在零度以下。在寒冷的冬季,污水站运行的难度也会逐渐增加。那么,污水站冬季运行要注意哪些事项呢?一、系统设备运行与维护1.格栅:连续运行。2.斜网、旋转滤网等:减小滤网供料泵出口阀门的开度,使含有温度的污水连续通过斜网,避免在间歇期间网眼筛孔结冰,失去过滤能力。3.间歇运行的泵阀和连接的管道:减小阀门的开度或调整泵的运行频率,使其连续运行,如自吸式刮泥机的排泥泵,气浮供料泵、加药泵等。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。4.停运(或备用)的泵阀和连接的管道:须通过泵口的排气阀、压力表、放空阀等进行放空,如备用的供料泵、回用水泵、排污泵等。5.鼓风机:具有水冷装置的鼓风机,应将回流水管与进水水管紧靠在一起,让回流水管的水温对进水水管进行保温,也可使用岩棉、泡沫板、聚氨酯、砂子等包裹或覆盖进水管,或者进行蒸汽、电伴热。6.设备或管道的取样阀:使用岩棉、泡沫板、聚氨酯等包裹,或者进行蒸汽、电伴热;也可将取样阀维持小开度,让其长流水避免上冻,避免冻裂阀门和管道(同时须避免流水直接流在地面结冰)。7.储药罐、溶药罐:这种罐体很难结冰,若出现结冰的趋势,可以连续运行搅拌器,或者通入压缩空气进行空气搅拌,当然也可从鼓风机的风管引风。8.冷凝水箱:若在运行状态,冷凝水箱液面长期静止,容易导致结冰,可通过投加防冻液的措施避免结冰(防冻液可以使用车用防冻液)。二、工艺运行与巡检1.环境温度降低至零度以下,厌氧、好氧系统的温度可能会相应降低,但对系统的处理能力影响有限。若确实有影响,对于厌氧系统,可以通过提高进水水温的方法来解决(但是,厌氧反应器的最高温度不宜超过38.5℃),对于好氧系统,可以通过稍稍提高污泥浓度,或者提高溶解氧的方式解决。2.巡检时,要注意平流沉淀池刮泥机或周边传动刮泥机的轨道或平台是否结冰,以免行动轮打滑,无法刮泥。3.巡检工作人员也要佩带劳动保护用品(含保暖用品),应该穿防滑鞋,避免不必要的伤害。4.若遇降雪,应及时将池面、楼梯踏步、钢平台上的积雪与浮冰清理干净,将各个池口的盖板盖好;若是连续降雪,在雪停后,须先清理积雪,并检查上下楼梯与钢平台,看看是否完好,确认完好后,再进行清雪作业;取消高空巡检工作,如厌氧反应器顶部巡检等。三、施工管理1.尽量避免雨雪天气户外施工作业,尤其是高空施工作业。2.若无法避免,作业人员必须持证操作,登高2m以上须系安全带,严防摔伤事故。3.减少或避免使用电取暖,尤其是禁止使用明火取暖。四、污泥运输车辆有些污水站自备污泥运输车辆,对此应加强对驾驶人员的安全教育,降低车辆行驶速度。同时检查并及时补充防冻液并使用冬季燃油,若未添加防冻液的车辆,须及时放空水箱的水;第二天出车前,重新加水。

    2019-01-03

  • 印染废水回用处理工艺

    印染废水回用处理工艺纺织印染行业废水具有排放量大、水质变化大、有机物浓度高、色度高等特点,其处理相对复杂.近年来,由于水资源的紧缺,众多环保学者在印染废水回用领域进行了大量研究.为了保证印染废水出水的稳定达标和中水回用,双膜法成为印染废水处理领域深度处理最为常用的处理技术,研究表明,全国75%以上的印染企业利用双膜法作为深度处理技术.双膜法技术包括超滤和反渗透(RO)两种膜处理技术.RO出水包括淡水和浓水,其中,淡水可直接排放或完全回用于印染工序,浓水由于盐度高、含一定浓度的难降解有机物和硬度,不仅不能直接排放,而且处理相当困难.目前,针对印染反渗透浓水(ROC)的主要处理措施有直接排放处理、回流二次处理和膜蒸馏技术.直接排放处理一般是指直接排入海洋,是最为常用的浓水处理技术,但此技术受到地理位置限制,在广大内陆等离海岸较远的地区不宜推广.回流二次处理是指将浓水回流至水处理系统的前处理段,再次进入水处理系统进行二次处理,这样使浓水中的难降解有机物和高盐度物质得不到外排,长期回流会导致生化系统盐分逐渐积累,微生物活性降低并最终导致生物处理系统的崩溃.膜蒸馏技术是一种膜技术与蒸馏技术相结合的膜分离技术,可以实现浓水和盐分的完全回收,但该技术耗能太高,大部分企业很难承受.pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。另外,汪晓军等采用Fenton氧化结合石灰苏打处理印染ROC,实现了印染ROC的完全回用,但由于Fenton氧化技术处理过程中有可能带入印染需严格限制的Fe2+,因此,需要后续设置絮凝沉淀池以完全去除出水中的Fe2+.鉴于现有各浓水处理工艺的不足,亟需开发一种新的处理工艺解决地理位置受限、处理成本过高及处理工艺复杂等难题.过硫酸盐(PS)氧化作为一种新型的高级氧化技术近年来在环境领域逐渐受到研究人员的关注.在常温条件下,PS是一种较为温和的氧化剂,反应速率较慢.当PS受到外界条件如热、微波、过渡金属离子作用时容易被活化,产生氧化性更强的硫酸根自由基(SO· -4),其标准氧化还原电位E0=2.60 V,高于PS的E0=2.01 V.相应的反应原理如下:pH对PS降解有机物有一定的影响,杨照荣等的研究表明,PS的氧化能力在碱性条件下比酸性和中性条件下较强,因为在碱性条件下硫酸根自由基会生成氧化能力更强的羟基自由基(· OH,E0=2.80 V),反应如下:除pH外,初始PS投加量、反应温度都是影响PS氧化反应的重要影响因素.PS氧化镇痛药(立痛定)的研究表明,有机物的氧化速率在一定初始PS范围内随初始PS用量的增加而加快.温度的提升大大提高了PS分解垃圾渗滤液中腐殖酸的速率,温度从90 ℃上升到150 ℃时,有机物去除率从63.5%上升到76.0%,温度继续上升到170 ℃,有机物去除率上升到78.8%.石灰苏打软水技术是废水处理领域最为传统的脱硬度技术.印染用水中硬度过高会造成染料在染色织物表面分配的不均匀性,同时降低染色织物的色牢度,是印染回用水严格规定的水质指标.采用石灰软化和微滤工艺处理某热电厂的循环冷却排污水的研究表明,石灰软化可大大降低废水的硬度和碱度,出水完全满足回用要求.本研究结合印染ROC水质特点及印染回用时需补充大量硫酸钠作为印染助剂的要求,将PS氧化和石灰苏打软水技术联合应用于印染ROC处理过程中.首先利用条件实验和正交试验研究PS氧化去除印染ROC难降解有机物的影响因素,包括反应pH、初始PS投加量和反应温度等条件,研究有机物降解的动力学模型;其次分析PS氧化前后无机组分和有机组分;最后确定石灰苏打脱硬度的最佳的石灰和苏打药剂投加量组合.2材料与方法2.1印染废水ROC印染ROC取自佛山市西樵镇某纺织有限公司,废水总排放量60000 m3 · d-1,ROC排放量约20000 m3 · d-1.原水水质:CODCr为112.5 mg · L-1,BOD5/CODCr为0.05,TOC为34.0~35.6 mg · L-1,SO42约9600 mg · L-1,CO32约1500 mg · L-1,Cl-约650 mg · L-1,pH为8.3~8.8.2.2主要仪器和药品pHs-3c便携式pH计(上海精密科学仪器有限公司);COD快速密闭消解测定仪(广东,韶关);BOD测定仪(美国,HACH);电子天平,恒温振荡器(上海精密科学仪器有限公司);离子色谱仪ICS-1600(美国,戴安);TOC测定分析仪TOC-LCPH/CPN(日本,岛津);PS、磷酸二氢钠、石灰和苏打等药剂均为分析纯(天津科密欧化学试剂有限公司).2.3试验方法及条件有机物降解:取100 mL ROC于250 mL的锥形瓶中,加入0.3 g磷酸二氢钠缓冲溶液,以10%的H2SO4和10%的NaOH调节pH值,加入一定量的过硫酸钠,锥形瓶置于恒温振荡器中,一定温度条件下完成活化氧化反应.硬度脱除:取200 mL经过硫酸钠氧化处理后的浓水,投加一定浓度的石灰并在120 r · min-1条件下搅拌反应10 min;加入一定浓度的苏打,120 r · min-1下搅拌反应15 min,静置沉淀30 min,取上清液测定出水硬度.2.4检测项目和分析方法COD采用快速密闭消解法(HJ/T 399—2007)测定,BOD5采用稀释接种法测定,TOC采用燃烧氧化-非分散红外吸收法(HJ 501-2009)测定,硬度测定采用锅炉用水和冷却水分析方法中硬度的测定方法(GB/T 6909—2008),硫酸盐和氯离子采用离子色谱法测定,碳酸盐采用标准盐酸滴定法测定,以酚酞和甲基橙作指示剂.

    2018-12-27

  • 厌氧消化过程氨抑制研究进展

    厌氧消化过程氨抑制研究进展随着厌氧消化理论研究的不断深入,厌氧消化工艺的研发和应用取得了迅速的发展,但处理效率低和!运行稳定性差是厌氧消化中普遍存在的问题,其中氨积累引发氨抑制是主要原因之一。文章简述了厌氧消化过程中氨抑制产生的机理及氨抑制的主要影响因素,介绍了氨抑制过程中微生物变化规律研究现状,总结了消除和缓解氨抑制的方法,并提出了厌氧消化氨抑制的重点研究方向。厌氧消化作为一种可获得能源的可持续生物处理技术,在实际工程中得到了广泛应用。在厌氧消化过程中,氨抑制被认为是影响其整体效能的重要因素。虽然氮是厌氧消化系统中微生物新陈代谢所必须的元素,但是厌氧消化体系中过高的氨氮往往会抑制微生物的正常生命活动,尤其是产甲烷菌。重点介绍了国内外厌氧消化氨抑制最新的机理研究,详细阐述了其主要的影响因素和消除措施,包括微生物驯化、pH值调节、温度控制及C/N比调节等,为厌氧消化技术工程应用的未来研究提供一定的借鉴和参考。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。厌氧消化作为一种能获得能源的可持续生物处理技术,其消化过程可以生成生物质能(主要为甲烷CH 4,含量为60%~70%),是一种极具前景并可缓解气候变化的绿色能源 。厌氧消化因具有稳定降解有机污染物并可在消化过程中产生可再生能源的特性,在对农业废弃物、食物残渣及污水厂剩余污泥等固体废弃物的无害化处理及资源化利用中得到了广泛应用 。在厌氧消化过程中,发酵物料内的含氮物质,如蛋白质、尿素和核酸等,在微生物的作用下最终被转化为氨氮(包括游离氨NH3及NH+4)。尽管氨氮是厌氧消化过程厌氧微生物所必须的营养物,且一定浓度的氨氮可以为消化过程提供良好的缓冲作用,但是体系中过高浓度的氨氮对微生物有抑制作用,这被认为是导致厌氧消化反应系统崩溃的主要因素 。近年来,国内外对厌氧消化过程中氨抑制进行了大量研究,本文重点归纳了厌氧消化过程氨抑制的形成机制、影响因素以及应对措施,以期为厌氧消化反应系统的稳定运行提供一定的借鉴。1厌氧消化氨抑制机理研究对厌氧消化过程中氨抑制形成机理的研究很多,但这些研究还不够完善,没有统一的共识。厌氧消化过程通常包括物质溶解、水解、酸化、乙酸化及产甲烷五个步骤 ,故厌氧消化系统的稳定运行主要取决于水解发酵菌、产酸菌和产甲烷菌等微生物在正常生理活动下的协同作用,其中产甲烷菌对体系中氨浓度的耐受性最差 。而氨抑制通常表现为稳定运行的厌氧消化体系中沼气产量下降以及挥发性脂肪酸VFA的积累 。许多研究者对氨抑制形成的机理提出了猜想,例如:产甲烷菌胞内pH变化、维持细胞正常生命活动所需的能量增加以及特定的酶促反应受到抑制等 。在厌氧消化水溶液中,NH+4离子和游离氨(NH3)是氨存在的两种主要形式。游离氨由于其良好的渗透性,被认为是导致体系受到抑制的主要因素。有学者通过纯菌种培养实验,推测体系中氨抑制对产甲烷菌的影响主要体现在以下两个方面:1)NH+4离子可能直接抑制了甲烷合成所需酶的活性;2)疏水的游离氨分子可能通过被动扩散进入细菌细胞内,造成质子失衡或细胞内缺钾 。游离氨NH3经由被动扩散进入微生物细胞内,结合胞外质子H+转化为NH 4+,进而造成细胞内pH变化。细胞为维持胞内质子平衡,通过细胞膜上钾泵消耗能量主动运输,将胞内钾离子移出至胞外,以维持胞内pH,由此增加了细胞维持能的需求并限制了一些特定的酶促反应。关于氨抑制阈值(见表1)的研究较多,Hejnfelt和Angelidaki研究发现,在厌氧消化系统总氨氮浓度为1 500~7 000 mg/L内均有可能发生氨抑制现象。而不同的厌氧消化系统氨抑制阈值的差异主要受消化基质及接种物料特性、消化温度、系统内pH及驯化时间等影响 。目前,对厌氧消化过程中氨抑制机理的研究,主要集中于体系中产甲烷菌的种群结构及多样性随氨浓度增加的变化。有学者研究表明,在厌氧消化过程中,氢营养型产甲烷菌较乙酸型产甲烷菌对体系中的氨浓度具有更强的耐受能力 。Gao等 通过设计餐厨垃圾厌氧消化反应器试验,结果发现,随着体系中氨浓度不断提升,试验最终阶段反应器内的辅酶F 420 (CoF 420 )的相对活性为最初阶段的2. 4倍,增加率达到114%。由于CoF 420的生化作用是低电位电子转移载体,特异性的将碳酸氢盐还原为氢气,进而被氢营养型产甲烷菌利用合成甲烷,从而证明随着反应器中氨浓度的提升,氢营养型产甲烷菌逐渐占据优势,这促进了特异性CoF 420的活性。Niu等利用16S rRNA分子生物学技术研究氨氮对鸡粪高温厌氧消化过程中,产甲烷菌群落随体系中氨氮浓度不同的变化。结果表明,氢营养型的甲烷热杆菌属(Methanothermobacter)由初始阶段的9. 3%发展至氨抑制阶段的95%,大大超过乙酸营养型的甲烷八叠球菌属(Methanosarcina),在高氨氮体系的产甲烷过程中占主导地位。Demirel及Scherer的研究也得出了相同的结论。

    2018-12-20

  • 污水处理技术之如何观察SV污泥沉降比

    污水处理技术之如何观察SV污泥沉降比在污水厂运行班每天都要做沉降比并将结果录入日报表,其实在沉降比实验过程相当重要,一些细微之处往往能告诉我们生化系统的运行状态,从异常现象里及时分析判断做出工艺调整,将生化系统调整到zui佳的运行状态中,实验过程如此重要,我们需要重新认识沉降比,从而观察记录实验过程中的细微之处,最短的时间里发现问题及时调整,保证生化池佳运行。沉降比的定义:去曝气池出口混合液与1000ml量筒中,静止沉淀30分钟后,所沉降的活性污泥体积占整个取样提及的百分数(%)。从定义上让人误以为,只要最终结果,其实过程也很重要。沉降比在污水处理厂运行过程中是个非常重要的参数,可以关联SVI、DO、MLSS、F/M、生物相、污泥龄、回流比等许多参数的判断。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。沉降比检测方便,沉降比在生化系统中可模拟出二沉池的效果,这项实验过程中可以观察出系统的污泥沉降过程,沉降过程中的各个阶段,为及早发现生化系统问题提供了可能。除开干扰因素,各个阶段的沉降状态尤为重要。采样初期混合液处于完全混合状态,初期絮凝状态能够迅速看到絮体检修清晰地间隙水,自由沉淀状态可以看到沉降过程了,集团沉淀状态观察到絮体积聚后的整体下沉,压缩沉淀过程状态时沉降过程已不明显,处逐步压缩阶段。在做沉降比实验时的观察要点有上清液液面、沉降过程、上清液、沉淀物等。1、仔细观察上清液液面是否有油状物、浮渣、气泡,并要用手轻扇量筒口闻气味。①油状物通常表现不明显,注意仔细观察朦胧的油状物覆盖液面;油状物存在的原因,进水含有矿物油或乳化油、洗涤剂和消泡剂;进水过少,相对曝气过度活性污泥解体所致;活性污泥老化解体。②浮渣通常为棕黄色、黑色絮状团浮于液面,存在原因:曝气过度;活性污泥老化;液面油状物所致;污泥中毒;丝状菌膨胀;活性污泥缺氧。③气泡通常表现为液面与量筒间的成排气泡(较大)或附着与液面浮渣的气泡(较小)。形成原因:曝气过度;活性污泥老化;液面油状物所致;反硝化所致;丝状菌膨胀。④气味在沉降初期闻,土腥味重则活性高;酸碱为重则混合液PH异常;臭味重则可能缺氧;其它异味可考虑特殊工业废水流入。2、仔细观察沉降过程中的整沉性、速度、间隙水、絮态等方面。①在自由沉淀到集团沉淀的阶段,整沉性表现处泥水界面清晰和整体沉淀。原因:活性污泥活性越低越好;污泥负荷越高越好;曝气过度则差;中毒污泥整沉性差;丝状菌膨胀整沉性好但沉速慢。②速度分初期絮凝速度;自由沉淀和集团承担的速度;泥水界面形成的速度。原因:活性污泥活性越高越好;污泥老化程度越老化越快;污泥是否中毒可快则快;活性污泥负荷越高越慢;丝状菌膨胀缓慢;污泥浓度过早集团沉淀;惰性物质含量越高越快;水温和扰动性。③絮体形成以后,絮体间水体情况,清晰度和颗粒物。原因:曝气过度增加不絮凝细小颗粒;活性污泥活老化解体;污泥负荷过高混合液浑浊;丝状菌膨胀高清晰度。④絮态为絮凝后的颗粒大小、絮体活动方向、絮体色泽。原因:曝气过度絮体松散;活性污泥老化絮体粗实、色泽深暗;活性污泥负荷过高造成细小絮体形成;丝状菌膨胀絮态细密。3、仔细观察上清液清澈度、颗粒、间隙水、挂壁等现象。①清澈度为上清液的整体色度、浊度。表现及原因:污泥负荷高低越高越差;曝气程度过量则差;污泥中毒整沉差;丝状菌膨胀上清液清澈。②上清液悬浮颗粒数量。原因:污泥老化程度越老化多颗粒;污泥是否中毒浑浊伴细小散在颗粒;活性污泥负荷越高越浑浊;惰性物含量越高越浑浊。③散在颗粒间水体清晰度。原因:曝气过度大颗粒间隙水见仍可见小颗粒;活性污泥老化间隙水清澈;污泥负荷过高间隙水浑浊;污泥中毒间隙水浑浊。④量筒壁粘挂有活性污泥絮体颗粒。原因:活性污泥老化;曝气过度。4、仔细观察沉淀物的压实性、色泽、卷毡度、气泡等。①压实性为最终的沉淀物密实度。原因:惰性物含量越多越密实;污泥负荷高低越低越密实;曝气程度过度则差;污泥是否中毒细碎密实;丝状菌膨胀随膨胀度而变化。②沉淀物的颜色深浅、光泽、鲜艳度。活性污泥活性越高色泽越淡;污泥老化程度越老化色深而无光泽;污泥中毒色泽晦暗;活性污泥负荷越高色泽越淡;丝状菌膨胀淡而白;污泥浓度越高色泽越深;污泥反硝化色泽亮丽。③沉淀后污泥的絮凝性进一步强化,表层非压缩部将增强其吸附性。原因:正常状态的活性污泥卷毡适度;活性污泥老化过度时表现明显;污泥中毒、高负荷时不具卷毡性。④沉淀絮体内夹有气泡。原因:曝气过度沉淀后即可见细小气泡;丝状菌膨胀;活性污泥老化后粘度增高;活性污泥反硝化搅拌后会释放出来;取样后高温细小气泡膨胀所致。从上述现象及原因可以得知沉降比实验中,观察记录沉降过程中的现象及细微之处,能更早的得知生化系统运行状态优良,及早地作出分析判断及时的做出工艺调整,有利于生化系统以zui佳的状态运行。

    2018-12-13

  • 关于废水零排放工艺的一些看法

    关于废水零排放工艺的一些看法目前国内脱硫废水主要还是以前的脱硫废水存入废水缓冲池后由废水提升泵送入中和、沉降、絮凝箱处理,后经澄清池溢流至出水箱、在出水箱内经pH调整后达标排放。处理后的水质基本上可以达到国家排放标准,但是因为脱硫废水中含氯离子较高,环保局是不允许直接排放。所以目前废水零排的主要目的是脱水废水中的氯离子。以下是我对国内几种脱硫废水零排放技术的看法仅供参考。脱硫废水处理主流工艺1.高温烟道蒸发工艺原理利用烟道的高温度对脱硫废水进行蒸发,废水中的污染物则因为水被蒸发结晶带入飞灰中。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。1.无需投入较多的新设备,不需要派专人负责,运行成本低,但是给除尘方面带来了新的问题,比如除尘器易结垢。2.煤灰含盐量高,建筑行业基本上是清退处理,根本不需要这种煤灰粉,因为易腐蚀钢筋。很有可能会带来新的固废问题,同时降低电厂一个收入的来源。2.预处理+膜浓缩+蒸发结晶技术1.原理是通过预处理降低清除脱硫废水中钙镁硫酸根离子,再通过膜浓缩技术提高含盐量,最后通过蒸发结晶生成工业盐。2.该工艺处理花费较大,在预处理阶段药品加入量比较大,并随着你处理废水能力提高你的加药量,药品价格比较昂贵主要体现在碱方面。3.需要专人维护,随脱硫运行倒班,且员工需要熟练掌握部分二价离子的化学浓度测量,有一定的化学基础。4.最终产生的工业盐量小无法成为销售产品,将可能形成新的固废。5.如果生产需要不要进行结晶处理,将残留一部分浓度特别高的脱硫废水无法处理。5.膜浓缩部分设备保养比较难处理,管道易损。将产生大量二价离子固废,不好处理。3.煤场喷洒氯离子高的话对管道腐蚀比较严重撒入煤场以后,氯离子循环进入脱硫系统,加上煤本身的氯离子,脱硫系统的氯离子会越来越高,最终造成整个脱硫系统的崩溃。煤场喷洒也会造成煤湿度过高,影响燃烧4.引入电厂渣水系统电厂灰渣呈碱性,原冲渣水pH值为12-13,运行过程中存在的问题是由于碱性灰渣水导致系统结垢现象严重。脱硫废水为酸性,酸性脱硫废水与碱性灰渣中和后,缓解了系统结垢。但是氯离子对管道阀门腐蚀严重,浓度越高腐蚀越严重,可行性不高。

    2018-12-06

  • 工业污水处理厂生化出水氨氮周年变化及原因分析

    工业污水处理厂生化出水氨氮周年变化及原因分析化工园区工业污水处理厂生化出水氨氮呈现出显著的周年变化。对进水水质进行分析,发现进水pH、氨氮浓度、阴离子浓度、重金属离子浓度均不是影响冬春季该工业污水厂生化出水氨氮不达标的原因。实验室连续流小试试验表明,好氧池污泥浓度、溶解氧也不是显著影响冬春季工业污水厂生化出水氨氮不达标的原因。进一步分析表明,温度显著影响该工业污水厂生化出水氨氮浓度,且存在不同的阈值。在夏季温度逐渐升高时,出水氨氮并没有逐渐下降,而是在当地最低气温达19~21℃时,出水氨氮才迅速下降并保持稳定;在冬季温度逐渐降低时,出水氨氮并没有逐渐升高,而是在当地最低气温达3~5℃时,出水氨氮迅速上升并保持稳定,且超出排放标准。温度较低时可以投加葡萄糖,提高对氨氮的去除能力。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。化工园区工业污水处理厂的进水呈现水质复杂、波动性强、可生化性较差的特点,常见单独生化工艺难以有效去除这类废水中的有机污染物。为有效处理这类污水,常先采用厌氧水解改善废水的可生化性 ,在此基础上再进一步地处理,形成了水解酸化-A/O、水解酸化-A2/O、水解酸化-MBR等技术,目前这些技术已大量应用于化工污水的处理中。上述技术在工业污水中的运用常关注有机物的降解,随着对工业污水排水要求的提高,近年来生化出水氨氮(NH4+-N)浓度也不断得到关注。实验室研发的新工艺和一些实际应用可以有效去除某一废水中的难降解有机物和NH4+-N,但还难以有效应对复杂多变的化工园区废水。目前现有生化工艺是否能够满足排水的要求,以及如何优化改进处理效果是一个值得关注的问题。因此有必要了解目前实际化工园区工业污水厂的生化出水NH4+-N长时间序列变化,而这方面的报道却较为少见。现有研究表明,影响微生物法去除NH4+-N的因素较多,如温度、pH、溶解氧(DO) 、NH4+-N浓度 、重金属离子浓度 、阴离子浓度、污泥浓度及有毒有机物等。这些因素中哪一个或几个是影响实际工业污水厂生化出水NH4+-N的原因值得分析。本研究对江苏沿海北部某化工园区稳定运行近一年半来的工业污水处理中的一组生化系统NH4+-N进出水数据整理分析,并结合其他相关水质和小试试验,进一步找出影响生化出水NH4+-N变化的原因,以期为后续污水厂及时调控运行和其他同类工业污水处理厂运行管理作为参考。

    2018-11-29

  • 燃煤电厂脱硫废水氯离子检测现状与应用进展

    燃煤电厂脱硫废水氯离子检测现状与应用进展近年来脱硫废水零排放作为燃煤电厂中控制污染物排放的重要措施而备受关注,特别是脱硫废水中氯离子含量的检测手段和方法已经成为研究热点。本文简述了适用于脱硫废水中氯离子检测的类别和方法,在阐述容量分析、色谱分析、光学分析和电化学分析4类氯离子分析方法原理的基础上,进一步介绍了硝酸银滴定法、离子色谱法、原子吸收光谱法、分光光度法、长周期光纤光栅法、电位滴定法和离子选择电极法7种氯离子检测方法及实际应用,并针对脱硫废水特殊条件对7种检测方法进行了比较,最后对燃煤电厂脱硫废水氯离子检测方法的发展趋势进行了展望。离子选择电极法具有响应快速、易微型化、在线监测等优点,是最适合发展成为脱硫废水氯离子检测标准方法的技术。在燃煤电厂,湿式石灰石石膏法烟气脱硫是主流的脱硫技术。脱硫系统中氯平衡pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。吸收塔中的氯主要有3个来源,即烟气、石灰石和工艺补充水,其中以烟气所携带的氯为主,烟气中氯约占煤燃烧析出氯含量的97%。吸收塔后的氯主要有两个去向,即烟气和脱硫浆液。湿式石灰石-石膏脱硫对烟气中氯的脱除率达到95%以上,所以氯离子主要存在于脱硫浆液,脱硫浆液中的氯由脱硫废水所带氯与石膏所带氯两部分组成,其中绝大部分氯是以脱硫废水的形式存在。由此得出脱硫系统氯平衡模型如式(1)。脱硫浆液中高浓度的氯离子会造成3个方面的危害,即脱硫系统设备腐蚀、脱硫效率低和石膏品质差。为了维持系统的正常运行,浆液中氯离子与脱硫废水中的氯离子需要满足一定要求。浆液氯离子浓度一般维持在20000mg/kg。但是在实际情况中,由于脱硫塔内部条件恶劣复杂,不能够实现脱硫塔内部的氯离子浓度在线监测,所以如果能实现脱硫废水氯离子的在线监测就能够对脱硫塔内部氯离子浓度进行很好地控制,从而对整个脱硫系统近一步优化。2017年5月21日发布的《火电厂污染防治可行技术指南》是对燃煤电厂污染物标准的完善,脱硫废水零排放也作为越来越多燃煤电厂的推广技术,氯离子含量也必然会成为未来的一项控制指标。通过对国内形势的分析,认为未来一段时间内,需要从现有的技术中找出一种快速并准确的氯检测技术来作为脱硫废水氯离子检测的标准方法。基于此,本文对燃煤电厂氯离子主流测定方法进行介绍及特点比较。1氯离子检测的类别和方法氯离子指的是氯的–1价离子,由于其物理性质较其他–1价阴离子相似,化学性质与同主族的元素也较接近,尤其是溴离子,因此氯离子相较其他离子更难精确测量。氯离子分析主要是对氯离子的浓度进行准确测定,常用的方法可以分为以下4类,即容量分析、色谱分析、光学分析和电化学分析。容量分析是通过计算已知浓度试剂的消耗量来计算氯离子浓度,例如硝酸银滴定法;色谱分析是通过固定相与流动性之间分配系数存在差别而进行分离、得出氯离子浓度,例如离子色谱法;光学分析是基于发射原理、吸收原理或者其他原理利用物质光学性质确定氯离子浓度,例如原子吸收光谱法、分光光度法和长周期光纤光栅法;电化学分析是利用化学电池内被分析溶液的组成与其电化学性质的关系来计算出氯离子浓度,例如电位滴定法和离子选择电极法。2氯离子检测方法原理及实际应用2.1硝酸银滴定法硝酸银滴定法是用来测量氯离子使用时间最长的一种方法,其原理是在中性或者弱碱性溶液环境中(pH6.5~10.5),铬酸钾作为指示剂,用硝酸银滴定氯化物,因为铬酸银的溶解度大于氯化银的溶解度,所以银离子会先以氯化银的形式沉淀,在氯化银被完全沉淀出来后,银离子再以溶解度更大的砖红色铬酸银形式被沉淀,指示到达滴定终点。沉淀滴定反应如式(2)、式(3)。佟琦等采用硝酸银滴定法测量自来水中的氯离子,对浓度为21.00mg/L左右的水样进行5次平行实验,结果显示标准偏差为0.4784mg/L,相对标准偏差为2.26%。赵晶晶等对氯离子含量约104mg/L的工业循环水中使用硝酸银滴定法测量,在进行6次平行实验后,结果显示相对误差为4.03%,相对标准偏差0.24%。硝酸银滴定法是最基本的一种测量氯离子浓度的方法,这很大程度上是由于其实验条件易于满足,获得结果可靠性较好,浓度范围在500mg/L以下最佳,在对测量结果的分析后可以得出硝酸银滴定法在浓度越大的时候产生的误差也越大,通过稀释又会产生稀释过程的误差,所以硝酸银滴定法并不是一种优秀的高浓度氯离子测量方法,只适合辅助验证。在有更高精确度与准确度要求或有在线监测的需求情况时,就较难满足需求。因为硝酸银滴定法的终点判断是靠操作人员对最后颜色变化的确定,但是颜色的变化受很多因素的影响,包括指示剂K2Cr2O7本身的颜色、AgCl沉淀的颜色以及不同操作人员对颜色的敏感度差异。2.2离子色谱法现代离子色谱是高效液相色谱的一种,正如吸附色谱法、分配色谱法、键合相色谱法、亲和色谱法和分子排阻色谱法是不同形式的高效液相色谱。离子色谱中的分离是基于洗脱液中离子和极性分析物离子之间存在的离子(或静电)相互作用,如图2使得不同离子在色谱柱内的迁移距离不同,最后按顺序出来,衍生为色谱。这可能导致分离的两个不同的机制:

    2018-11-22

  • 浅谈火电厂脱硫等环保设施存在的主要问题及对策

    浅谈火电厂脱硫等环保设施存在的主要问题及对策随着我国经济的迅速发展,国家对电力的需求越来越高,提升电力设施运行稳定性是当务之急。火力发电厂的发电方式主要以煤炭为主,环境污染问题较为严重,故采取脱硫等环保方式,以减少对环境的污染程度。论文将针对火电厂脱硫等环保设施存在的问题展开研究,并结合实际提出应对举措。近年来,人们对环境越加关注,在可持续发展理念下,火力发电厂进入大整改期间。其中,脱硫等环保设施的应用在一定程度上大大提升了环境质量,降低火力发电厂对环境的污染程度。有必要进一步对脱硫等环保设施加深研究,利用多种环保设施,更好地处理大气、水污染问题。2火力发电厂脱硫等环保设施现状分析近年来,火力发电厂秉持着可持续发展理念,随着经济的不断发展,我国生产和生活活动都对电力等能源有了更高的要求,这也促进了火电厂的增加对国民经济发展有着重要的作用,在节能减排、减少污染等方面不断努力,加大研究力度。电力行业也是其他各行各业生产能源的主要提供者。而电力生产过程中往往会排放大量的硫氧化物、氮氧化物和颗粒物,对大气造成严重的污染,进而影响到了人们的正常生活。在电厂生产过程中,如何对烟气进行脱硫是一项非常重要的工作。其中,湿法烟气脱硫技术是非常有应用前景的脱硫方法,国内多家企业都开始引进这种烟气净化技术。湿法烟气脱硫工艺早在1974年就开始研发应用,我国国内企业也开始引进这种脱硫技术,并在实际生产中发挥了很大的作用。尤其将高效除尘设备以及脱硫设备的投入,在环境保护工作中发挥着不可忽视的重要作用。虽然设备在不断增加,但运行状态却有待提升。在大气污染排放标准进一步严格要求下,火力发电厂脱硫等环保设施性能需要进一步提升,才能在排放要求上满足我国环保的新要求,促使节能减排结构发生新一轮的变化。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。3火力发电厂脱硫等环保设施存在的主要问题火力发电厂的脱硫工艺包括湿法、半干法、干法三大类脱硫工艺,其中湿法石膏脱硫技术较为成熟,因而自80年代以来石膏法脱硫成为当今国内外选择火电厂烟气脱硫设备工艺的首选,根据《火力发电厂节能减排手册》统计可知,石灰石湿法脱硫技术在全世界市场占有约75%占有率。火力发电厂脱硫等环保设施在具体应用过程中,仍旧存在部分问题亟待解决。首先,在废水处理问题来看,废水系统处理设备仍存在闲置状况,未能得到应有的重视与应用。尤其是副产物含有诸多较难去除物质。比如:含限排污染物的脱硫废水在现有废水处理系统工艺下无法做到达标排放或是废水处理再利用。在运行过程中,对废水系统设备的维修与管理不及时,导致故障频发。而电力用水量存在不平衡状况,缺乏定期维修与检测之工作任务,其安全性有待商确。其次,电厂在粉尘处理过程中,其出口烟尘浓度不符合标准,与煤质变化存在差异,常易出现设备性能降低或设备老化等恶劣问题。除此以外,发电厂其脱硫环保设施在应用过程中,与实际脱硫工程质量要求存在较大差异,其设施性能需要进一步提升。在运行过程中,还包括:CCH堵塞问题、旁路运行问题、综合脱硫效率问题、燃煤硫分问题等等。对系统以及脱硫设施的运行造成极大伤害,严重降低脱硫系统运行效率。其次,除尘器出口的烟尘浓度在标准以上,当大量烟尘进入脱硫吸收塔后,其实际脱硫效率将大大降低,甚至出现故障以及超标排放。4火力发电厂脱硫等环保设施存在问题的对策4.1改造火电厂环保设施对策4.1.1改造方式常规锅炉烟气从炉膛出口依次经过SCR、空气预热器、ESP...烟囱排放。安装脱硫环保设施后,在FGD装置后设有湿式电除尘器,以及净烟气排放加热机组等装置。目前来说,火电厂能够做到采取环保设施减少对环境的污染程度,但由于机组与脱硫系统的安全运行的要求下,至少需要4台浆液循环泵。当机组低负荷运行状态时,整个环保设施的用电率将大大增加,反而造成电厂煤耗的增加,不利于节能减排。遂需要进行改造。根据每个火力电厂需要2台或2台以上的机组数量,其分布模式为对称式,且环保设计参数足够,满足实际运行烟量的处理能力。因此,在单套机组烟气处理设施基础上,对其采用烟道相互连通之方式,利用2台以上数量的临近机组引风机,进而实现不同机组之间的烟气互通。由于使用了2台以上的机组,因此当其中某台机组关闭时,其能够通过其余机组将烟排放出去,进而开展后续有关工作。如此,全面实现了同一套减排设施,处理2台机组的烟气量,且能够满足负荷正常运行,又能够闲置出另外一套减排环保装置,避免不必要的耗能。4.1.2改造后的性能低负荷运转状态下,仅需要一台机组环保减排设置,停运另一台机组。按照有关计算,不考虑其他设备耗能情况,其每小时至少可节约用电450k W·h。大大降低了火力发电厂用电率,符合节能减排之根本思想。其次,低负荷状态下,由于该环保设施中包含2台以上机组联合运行,因此在满足单套机组运行条件下,实际环保减排在达到标准的同时,又能够充分发挥其减排之能力,提升机组实际应用能力。同时,从安全的角度讲,若其中一台机组发生故障,无法正常运转,此时可采用另一台机组继续工作,避免浪费时间。在环保要求极高的今天,采取两台机组联合运转模式,大大提升机组运行安全性、可靠性。4.2加强对脱硫等环保设施的管理与运用火力发电厂处在持续运行状态,其设备寿命与运行状态常常受到较大影响。因此,对设备的维护与管理十分重要。将脱硫设施运行、检修、维护、管理、燃料管理等工作纳入日常工作范围内,确保脱硫设施与主设备同步、连续、稳定运行。同时,保证其设计效率满足浓烟排放的基本要求,当未能满足要求时,应对设备进一步研究,避免其出现严重故障,影响火力发电厂运行状态。与此同时,脱硫等环保设备的数据管理问题也应加大研究,在脱硫设施基础上,安装分布式控制系统,或其他集成系统。利用先进的可持续技术,实现对脱硫设施的实时监控,并对其运行数据进行分析,存储。工作人员仅需要调阅运行参数与趋势曲线,便能够对脱硫等环保设施运行状态有所了解,以确保环保设施正常运行。4.3及时评价脱硫等环保设施火力发电厂运行过程中,脱硫等环保设施确实存在较大的先天缺陷,包括燃煤硫分超高、脱硫设施脱节等问题。故此,工作人员有必要对本厂脱硫等环保设施进行客观、公正的评价。针对其固有问题,采取有针对性的方式加以解决,改造。对于脱硫设施运行不佳的GGH、脱硫废水等系统,有必要进行改造工作,以符合本厂实际脱硫情况,符合我国对环境保护的有关要求。5结论综上所述,本文针对火力发电厂脱硫等环保设施存在的问题进行了简单的分析,并提出综合优化举措。其中,改造不失为良策,可针对脱硫等环保设施存在的先天性缺陷加以解决,并进一步发挥环保设施的性能。大大提升脱硫环保设施运行的安全性、可靠性,湿法烟气脱硫技术因具有脱硫效率高、简单实用、可靠性强、设备投资低等优点,使得其有着很好的应用前景。未来,随着技术的进一步改善,湿法烟气脱硫技术在烟气脱硫方面将会得到更广泛的应用,以符合我国可持续发展的环保理念,符合浓烟排放标准。

    2018-11-15

  • 垃圾焚烧厂垃圾渗滤液的深度处理

    垃圾焚烧厂垃圾渗滤液的深度处理随着城市规模的扩大和人口的增多,生活垃圾的产生量也迅速地增长。根据《城市生活垃圾管理办法》的要求,城市生活垃圾的治理实行减量化、资源化和无害化的原则,采用填埋、堆肥、焚烧等方法对生活垃圾进行处理。但是无论采用何种方法,均会产生垃圾渗滤液,若不加处理而直接排入环境当中,会造成严重的环境污染。本文以某垃圾焚烧发电厂产生的垃圾渗滤液为例,分析了垃圾渗滤液的深度处理工艺与技术。1垃圾焚烧厂渗滤液特点分析1.1渗滤液的水量特点垃圾渗滤液主要来源于储运过程中渗入雨水和地表水、垃圾发酵分解产生的水分和垃圾本身所含的水分,一般认为渗滤液产量是垃圾处理量的10%~20%。渗滤液的产生量随季节变化明显,在冬季一般为生活垃圾量的8%~10%;夏季一般为生活垃圾量的12%~15%左右,暴雨时高达生活垃圾量的20%~25%。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。焚烧工艺的不同对渗滤液的产生量也存在一定的影响,使用循环流化床工艺的,垃圾经过预处理后就直接进入锅炉焚烧,无需对垃圾进行堆酵和储存,因此产生的垃圾渗滤液会相对较少[1]。使用炉排炉工艺的,由于新鲜垃圾焚烧热值较低,需要对生活垃圾进行2~4d的堆酵后再进行焚烧处理。经研究发现,堆酵48h析出的垃圾渗滤液量为生活垃圾中堆酵可析出的渗滤液量的99%。1.2渗滤液的水质特点通过对垃圾焚烧厂渗滤液水质特性的分析可以看出,焚烧厂渗滤液主要有以下特点:(1)垃圾渗滤液中不仅含有有机物,还含有油、氨氮、重金属等污染物,水质水分复杂,浓度变化大。(2)焚烧厂垃圾渗滤液大多是当天产生的,未经厌氧发酵、水解、酸化过程,内含多种难降解有机物,具有COD、BOD5浓度极高、毒性大、难处理等特点。(3)垃圾渗滤液中的微生物营养元素比例失调,在系统调试启动的时候,需要加入一定量磷酸二氢钾,以补充磷营养元素。(4)垃圾焚烧厂渗滤液的氨氮值在1.2g/L以上。2项目概况要求達标产水量不低于308m3/d,即深度处理系统的总回收率不低于70%,出水水质出水水质执行《城市污水再生利用 工业用水水质》(GB/T19923-2005)中敞开式循环冷却水水质标准,浓水采用回喷焚烧处理,不考虑浓水单独处理方案。项目设计采用“机械过滤+调节池+混合反应沉淀池+厌氧系统+A/O系统+膜生物反应器(TMBR)+纳滤系统(NF)+反渗透系统(RO)”工艺,以满足垃圾渗滤液水量变化大、较强的抗冲击负荷能力、高负荷处理能力、高氨氮处理能力、重金属离子和盐分含量高的问题。3膜工艺设计3.1膜生化反应器大量的微生物(活性污泥)在膜生物反应器内与基质(渗滤液中的可降解有机物等)充分接触,通过氧化分解作用进行新陈代谢以维持自身生长、繁殖,同时使有机污染物降解。膜组件对渗滤液和污泥的混合液进行固液分离。污泥被浓缩后返回生物反应器,从而避免了微生物的流失。膜组件相当于传统工艺的二沉池,但是克服了传统二沉池的很多缺点[3]。膜生物反应器(MBR)主要由膜组件和生物反应器两部分组成,根据组合方式可分为外置式和内置式(浸没式)。对于垃圾渗滤液处理而言,内置式膜生化反应器的使用将会产生较多问题,因此,本项目设计采用外置式膜生化反应器。管式超滤膜进水泵将好氧池内渗滤液泵至管式超滤膜系统进行固液分离和浓缩,浓缩液回流到厌氧池,多余部分流至污泥储存池。管式超滤膜系统设有2个环路,每个环路设有4根德国特里高公司生产的直径为8mm、内表面为PVDF的管式超滤膜,每个环路有单独的循环泵,沿膜管内壁提供一个需要的流速,从而形成紊流,产生较大的过滤通量,避免膜管堵塞。经管式超滤膜处理后的水,经检测合格后进入纳滤系统[4]。3.2纳滤系统外置式膜生物反应器生物总反硝化率超过99%,出水的氨氮、总氮等已经达到排放标准。但是难生化降解的有机物形成的COD和色度仍然超标。由于管式超滤膜出水不含悬浮物和可生物降解的有机物,设计采用纳滤膜对管式超滤膜出水进行深度处理,以去除难生化降解的有机物、色度。纳滤膜是介于反渗透和超滤之间的一种新型的压力驱动型膜分离技术。它具有两个特性:水中的分子量为数百的有机小分子成分具有分离性能;对于不同价态的阴离子存在道南效应。纳滤膜对一价离子不作截留,因此纳滤膜可以在把不可降解的大分子有机物截留在浓缩液中随浓水排出。纳滤膜的实际操作压力在7bar左右,能耗较低,因此纳滤膜的运行能耗较低。本项目纳滤系统设有两条环路,环路内设有一支耐压膜壳,耐压膜壳内设有4支美国GE公司生产的卷式纳滤膜元件,清液产率可达到85%以上。3.3反渗透系统反渗透系统是本流程中最主要的脱盐装置,它具有极高脱盐能力,能阻挡所有溶解性盐及分子量大于100的有机物,但允许水分子透过,反渗透复合膜脱盐率一般大于98%。采用反渗透膜能有效截留垃圾渗滤液中溶解态的有机和无机污染物、盐分,使出水满足要求。反渗透膜在垃圾渗滤液处理的应用中,根据形式可分为有碟管式反渗透膜和卷式反渗透膜。由于碟管式反渗透膜运行压力高达70~120bar、单支膜过滤面积较小,导致投资成本和运行能耗较高,占地面积较大,因此设计采用卷式反渗透膜作为纳滤膜的后处理,完全可以满足系统运行要求。本项目反渗透系统设有一条环路,环路内设有三支耐压膜壳,耐压膜壳内设有12支美国陶氏公司生产的卷式反渗透膜元件,清液产率可达到80%以上。4结论垃圾渗滤液经处理后满足冷却循环水补充水水质要求,用于补充冷却循环水、绿化、渣池、配置石灰乳等途径,既解决了排水问题,又节约了水资源的消耗,同时削减了污染物的排放量。

    2018-11-09

  • 火力发电厂脱硫废水“零排放”工艺及案例对比

    火力发电厂脱硫废水“零排放”工艺及案例对比摘要:由于火电厂脱硫废水水质复杂、波动较大,对其他设备产生严重的腐蚀,实现脱硫废水“零排放”具有重要的现实意义。本文综述了脱硫废水“零排放”的处理工艺,结合我国火电厂成功实现脱硫废水“零排放”工程案例,全面分析并对比了其处理效果、经济效益和优缺点等,对火电厂实现脱硫废水“零排放”具有一定指导意义。脱硫废水零排放关键词:脱硫废水;零排放;废水处理;工艺对比1概述pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。火电作为用水、排水大户,用水占工业总量的20%[1],从经济运行和环境保护出发,节约发电用水,提高循环水的复用率,实现火电厂废水“零排放”意义重大。传统电厂废水处理可轻易实施各种层次的梯级应用,各废水通过传统成熟的工艺得以解决,但是最高浓度最复杂也最难处理的废水是脱硫废水,由于其成分的特殊性、复杂性和强腐蚀性,其处理成为制约火电厂废水零排放的关键因素。电力企业实现脱硫废水零排放的需求越来越迫切,即将成为日后必然趋势。2脱硫废水特性脱硫废水一般具有以下几个特点[2]:1)水质呈弱酸性;2)悬浮物含量高(石膏颗粒、二氧化硅、铝和铁的氢氧化物);3)氟化物、化学需氧量、重金属超标,其中包括我国严格限制排放的第1类污染物,如汞、砷、铅等;4)硬度离子高,含有大量的镁、钙等离子;5)盐分高,含有大量的氯离子、硫酸根离子、亚硫酸根等离子,其中6)氯离子浓度高达12000~20000mg/l;7)氨氮含量超标;8)水质、水量差别大。脱硫废水零排放由上表看出,脱硫废水盐分含量高(氯离子尤为显著),导致下游系统设备、管道等腐蚀严重,回收利用非常困难,是火电厂中最复杂、最“脏”的一股水。3零排放技术主要路线目前市场通用零排放技术均采用“预处理单元+减量浓缩单元+固化单元”技术系统。3.1预处理单元预处理为整个脱硫废水零排放的基础,该部分采用各种技术,将废水中所含污染物质分离去除、回收利用,或将其转化为无害物质,净化水质。脱硫废水处理技术,按原理可分为如下两种[3]:物理法:利用物理作用分离废水中悬浮状态的固体污染物质,有筛滤法、沉淀法、气浮法、过滤等;化学法:利用化学反应,分离废水中各种形态的污染物质(包括悬浮物、溶解物、胶体等),有中和、混凝、电解、氧化还原、萃取、吸附等。以上的二种方法,以二级沉淀软化最为常用,主要通过投加石灰乳、碳酸钠和液碱等药剂,去除水中硬度离子、悬浮物等,保证系统运行过程中不产生无机垢类。

    2018-11-01

  • 污水处理技术之活性污泥生物相观察的经验总结

    污水处理技术之活性污泥生物相观察的经验总结活性污泥法在污水处理领域中占据重要的地位,得到了国内外的广泛研究。在污水处理过程中,观察了活性污泥的生物相,分析了污水处理过程中生物相群体的变化,对水处理系统的长期正常运行具有重要的指导意义。本文介绍了活性污泥法生物相观察的方法,讨论了活性污泥生物相观察在污水处理中的指示作用,为污水处理系统的良好运行和管理提供了指导。1、生物相为何能反应污水系统状态?其原理是利用活性污泥中的微生物,原生动物和后生动物等生物相在曝气条件下将污水中的有机物氧化分解成CO2,H2O。一些无机物质,如PO43-,NH3和H2S,分解过程中产生的能量用于生长和繁殖微生物本身。源源不断的污水进入,生物相在污水中不断生长繁殖,最终形成一个相对稳定的具有一定降解功能的生态系统。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。这种稳定生态系统的形成得益于生物相良好的生长环境,包括温度、酸碱度、有机负荷、抗生素浓度、供氧等,当污水处理系统中的各控制因素发生变化时,活性污泥中的各种生物相的种类、数量及活性功能也会随之发生相应变化。在一定程度上,处理系统中活性污泥生物相的变化反映了污水处理系统运行的质量和状态。因此,通过观察污水处理系统中生物相种群数量和活性污泥数量的变化,可以了解处理系统的运行状况和质量,并可以及时调整处理系统的运行条件以改变生物相,确保处理系统能够继续正常运行。当前对污水处理系统中生物相观察已经在水处理领域中得到了广泛应用。2、活性污泥的生物相观察方法活性污泥的沉降性能取新鲜的活性污泥,置于100毫升的量筒中、静置一定时间,仔细观察污泥的沉降速率、泥水界面是否清洗、上清液是否透明等。活性污泥的生物相观察观察前将所观察的样品混合均匀,用大口径定量移液管(保证容易取到活性污泥)吸取0.05mL样品与载玻片上,盖上盖玻片,置于显微镜下观察。刚开始在100倍视野下观察,环视整个视野,对样品生物相的大致情况有初步了解,初步掌握絮体的状态、粒径、压密性以及观察到的原、后生动物的种群。了解生物相中体型最大的生物种类,一定程度上体型最大的生物种类表示出污泥的停留时间。当100倍视野观察不清晰时,采用400倍视野观察。尤其是生物相的口、鞭毛着生位置及数量、纤毛虫纤毛着生方式及丝状菌生长情况必须在400倍视野以上才能观察清楚。3、活性污泥生物相观察的指示作用活性污泥的结构活性污泥的各种物理、生物性状能客观反映污水处理过程的运行状态。若在观察时发现活性污泥的絮粒大、边缘清晰、结构致密,吸附性能和沉降性能良好,表明污水处理运行状态良好,在后续处理工艺中能很好进行泥水分离,污水处理出水效果好。观察絮体与絮体之间的水中有无悬浮物(Suspended Solid,SS),若悬浮物越多,则预示着污水中含有大量悬浮物。当处理系统出现异常情况时,污泥结构松散、絮粒变小,出现大量的游动型纤毛虫类等原、后生动物,包括草履虫属、豆形虫属、肾型虫属、变形虫属、滴虫属等生物,表明此时处理系统污泥沉降性能差,泥水分离效果不佳,影响出水效果。4、生物相指示原生动物、后生动物的指示作用进水负荷指示:在正常运行的活性污泥中,生物相保持相对稳定,原、后生动物主要以游仆虫属、漩口虫属、轮虫属等为主。当出现熊虫、瓢体虫等高级后生动物时,则预示污水进水负荷低,处理系统长时间低负荷运转进入老化时,会出现轮虫、线虫等微型后生动物。此时应该增加污泥负荷。当活性污泥中的原生动物较正常状态下的数量明显减少,游仆虫等一些低负荷状态下出现的原生动物消失,不出现后生动物时,则预示着进水负荷过高,变形虫和一些小型鞭毛虫占优势[2]。此时应采取减少污水进水量、减少排泥量等措施来降低污泥负荷,维持系统正常运转。溶解氧指示:活性污泥溶解氧不足时常出现的阿托氏菌属、硫细菌、扭头虫属和新态虫属等原生动物。同时,在高负荷、曝气量不足的状态下,则出现大量的小鞭毛虫。此时应采取增加曝气量等措施增加溶氧量。在溶解氧高时,常常出现变形虫、肉足虫和轮虫等生物。此时应采取减少曝气量、提高污泥回流比等措施提高污泥浓度,降低污泥负荷。污水酸碱性指示:当污水碱性较强时,常出现出水浑浊、活性污泥解体、原生动物死亡解体、处理效率降低等现象,应及时投放酸予以中和。当酸性过强时,活性污泥处理池常有一股酸味,处理效率降低,各种生物相活性降低,此时应及时加碱予以调节。同一种生物种群数量变化的指示作用污水处理系统在正常的运行状态下,其所含各生物在数量和种类上是保持相对稳定的,反之当各生物的种类和数量发生较大波动时,预示着污水处理系统环境在发生相应的变化。当污泥中所含丝状菌大量出现时,表明污泥已经发生膨胀或即将发生膨胀,包括球衣菌属、贝氏硫细菌、诺卡氏菌属、霉菌等,应及时采取相关措施抑制丝状菌生长,调整系统的各项处理条件,维持处理系统稳定运行。当絮体结构松散时,小絮体将成为某些轮虫的食物。在充足的饲料下,轮虫过度繁殖。出现这种情况时,污泥老化,应采取相应的污泥处置措施,以消除污泥老化水处理效果造成的损害。原生动物和一些微型动物比毒素对毒素更敏感。屏蔽纤维是活性污泥中的一种重要指标。当这类生活污泥迅速减少时,表示污水中的有关有毒物质。它需要及时预处理。5、总结活性污泥是一个相对稳定的具有一定降解功能的生态系统,这种稳定生态系统的形成得益于生物相良好的生长环境,当污水处理系统中的环境条件发生改变时,相应的生物相也会随之改变。生物相的变化在一定程度上反映了污水处理系统的质量和状态。在污水处理系统的运行和管理中,可以通过观察活性污泥的生物相变化来研究处理系统的运行状态,及时发现处理系统存在的问题,并采取措施保证其连续性、稳定的运行。当然,在不同的地区和不同的污水处理厂,水质和加工工艺也不同,污水种类繁多,活性污泥的生物相也会有很大的不同。因此,在工作实践中,应参照具体情况,研究适合具体案例的水质变化与生物相变化的相互关系,从而通过观察生物相的变化更好的指导污水处理厂的运行管理。

    2018-10-25

  • 一文了解我国仪器仪表行业现状与产品发展趋势

    仪器仪表制造可分为通用与专用两大类仪器仪表是用以检出、测量、观察、计算各种物理量、物质成分、物性参数等的器具或设备。真空检漏仪、压力表、测长仪、显微镜、乘法器等均属于仪器仪表。具体可分为通用与专业两大类。经过多年发展,我国仪器仪表行业少数产品接近或达到当前国际水平,许多产品具有自主知识产权。工业自动化仪表及控制系统品种系列较全,为国家重点大型工程配套能力大大提高。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。我国仪器仪表制造业规模以上企业数量突破4300家近年来,行业之间、同行企业间的态势开始逐步出现分化,市场和技术等资源向行业优势企业集中,同类产品、同等规模的生产企业市场份额差距逐步拉开,强者恒强的格局开始显现。特别是上市企业,利用融资和品牌优势实现了快速发展,对促进产业整合,提高行业产业集中度有一定的积极意义。2017年我国仪器仪表制造业规模以上企业数达到4358家,其中497家企业出现亏损,亏损企业平均亏损金额为734.4万元。我国仪器仪表制造业规模以上企业销售收入突破9500亿元2017年,我国仪器仪表制造业年度总产值为9995.00亿元,产值同比增长2.60%;资产总额为9271.00亿元,年度销售收入为9558.40亿元,销售收入同比增长2.17%;年度利润总额为869.10亿元,利润同比增长9.97%。工控系统装置占我国仪器仪表行业出口交货值比重超过四分之一我国仪器仪表行业进出口增幅巨大,出口角度体现了我国仪器仪表产业发展的实力,证明了我国证明了我国仪器仪表生产技术的提升带动了我国出口规模的快速上涨;进口角度来看,我国仪器仪表进口量的提升,说明了我国在保持高速稳定的经济发展的同时,工业机械产业的发展是有力的支撑点和启动点。2017年,我国仪器仪表行业出口交货值1347.74亿元,占机械行业7.08%,比上年同期增加157.23亿元。其中,工业自动控制系统装置出口交货值占全行业26.04%,钟表与计时仪器出口交货值占全行业21.28%,光学仪器行业出口交货值占行业比值为17.94%,其他行业占比不足全行业的10%。仪器仪表呈现微型化、多功能化、智能化、网络化四大发展趋势随着现在科学技术的发展,仪器仪表行业发生了突飞猛进的发展,再加上当前计算机技术、网络技术的进步和发展,组建网络而构成实用的监控系统,可以提高生产效率和共享信息资源方向发展。当前仪器仪表行业产品发展呈现如下四大发展趋势:(1)仪器仪表呈现微型化发展趋势。当前随着电子机械技术的不断发展,技术的不断进步、成熟,价格也不断降低,应用领域不断增加,微型仪器仪表将不仅具有传统的仪器仪表的功能,而且能在自动化技术、航天、军事、生物技术、医疗领域起到独特的作用。(2)仪器仪表的发展会更加的多功能化。对于这种多功能的综合性产品不但在性能上(如准确度)比专用脉冲发生器和频率合成器高,而且在各种测试功能上提供了较好的解决方案。(3)仪器仪表趋向与人工智能化。将来的仪器仪表在计算机应用的一个崭新的领域,利用计算机模拟人的智能。即代替人的一部分脑力劳动,从而在视觉、听觉、思维等方面具有一定的能力。(4)仪器仪表趋向网络化发展趋势。随着当前网络技术的飞速发展,Internet技术正在逐渐向工业控制和智能仪器仪表系统设计领域渗透,未来仪器仪表行业将融合isp和emit技术,以实现其网络化。

    2018-10-18

  • 污水处理技术之生物除磷的原理及6大影响因素

    污水处理技术之生物除磷的原理及6大影响因素废水中磷的存在形态取决于废水的类型,最常见的是磷酸盐、聚磷酸盐和有机磷。生活废水的含磷量一般在10~15mg/L左右,其中70%是可溶性的。常规二级生物处理的出水中90%左右的磷以磷酸盐的形式存在。在传统的活性污泥法中,磷作为微生物正常生长所必需的元素用于微生物菌体的合成,并以生物污泥的形式排出,从而引起磷的去除,能够获得10%~30%的除磷效果。在某些情况下,微生物吸收的磷量超过了微生物正常生长所需要的磷量,这就是活性污泥的生物超量除磷现象,废水生物除磷技术正是利用生物超量除磷的原理而发展起来的。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-1312 pH电极,S400-RT33 pH电极制造商,比如美国BroadleyJames来说是个重大利好。美国BroadleyJames做为老牌的E-1312pH电极,S400-RT33 pH电极制造商,必将为中国的环保事业带来可观的经济效益。我们美国BroadleyJames生产的E-1312 pH电极,S400-RT33 pH电极经久耐用,质量可靠,测试准确,广泛应用于各级环保污水监测以及污水处理过程。(一)生物除磷的原理根据霍尔米(Holmers)提出的化学式,活性污泥的组成是C118H170O51N17P,由此可知,C:N:P=46:8:1。如果废水中N、P的含量低于此值,则需另行从外部投加;如等于此值,则在理论上应当是能够全部摄取而加以去除的。生物除磷的基本原理是利用一种被称为聚磷菌(也称为除磷菌、磷细菌等)的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐(该过程称为厌氧释磷);而在好氧条件下又能超过其生理需要从水中吸收磷(该过程称为好氧吸磷),并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。1.在厌氧区内的释磷过程。在没有溶解氧和硝态氮存在的厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为挥发性有机酸(VFA),聚磷菌吸收VFA并进入细胞内,同化合成为胞内碳源的储存物—聚-β-羟基丁酸盐(PHB),所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放。2.在好氧区内的吸磷过程。聚磷菌的活力得到恢复并以聚磷的形态储存超出生长需要的磷量,通过对PHB的氧化代谢产生能量用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式储存起来,磷酸盐从液相去除。产生的高磷污泥通过剩余污泥的形式得到排放,从而将磷从系统中去除。(二)生物除磷的影响因素1.溶解氧。溶解氧的影响包括两个方面。首先必须在厌氧区中控制严格的厌氧条件,这直接关系到聚磷菌的生长状况、释磷能力及利用有机基质合成PHB的能力。由于DO的存在,一方面DO将作为最终电子受体而抑制厌氧菌的发酵产酸作用,妨碍磷的释放;另一方面会耗尽能快速降解的有机基质,从而减少聚磷菌所需的脂肪酸产生量,造成生物除磷效果差。其次是在好氧区中要供给足够的溶解氧,以满足聚磷菌对其储存的PHB进行降解,释放足够的能量供其过量摄磷之需,有效地吸收废水中的磷。一般厌氧段的DO应严格控制在0.2mg/L以下,而好氧段的溶解氧控制在2.0mg/L左右。2.厌氧区硝态氮。硝态氮包括硝酸盐氮和亚硝酸盐氮,其存在同样也会消耗有机基质而抑制聚磷菌对磷的释放,从而影响在好氧条件下聚磷菌对磷的吸收。另一方面,硝态氮的存在会被部分生物聚磷菌(气单胞菌)利用作为电子受体进行反硝化,进而影响其以发酵中间产物作为电子受体进行发酵产酸,从而抑制了聚磷菌的释磷和摄磷能力及PHB的合成能力。3.温度。温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,因为在高温、中温、低温条件下,不同的菌群都具有生物脱磷的能力,但低温运行时厌氧区的停留时间要更长一些,以保证发酵作用的完成及基质的吸收。在5~30°C的范围内,都可以得到很好的除磷效果。4.pH值。pH值在6~8的范围内时,磷的厌氧释放过程比较稳定。pH值低于6.5时生物除磷的效果会大大降低。5.BOD负荷和有机物性质。废水生物除磷工艺中,厌氧段有机基质的种类、含量及其与微生物营养物质的比值(BOD5/TP)是影响除磷效果的重要因素。不同的有机物为基质时,磷的厌氧释放和好氧摄取是不同的。根据生物除磷原理,相对分子质量较小的易降解的有机物(如低级脂肪酸类物质)易于被聚磷菌利用,将其体内储存的多聚磷酸盐分解释放出磷,诱导磷释放的能力较强,而高分子难降解的有机物诱导释磷的能力较弱。厌氧阶段磷的释放越充分,好氧阶段磷的摄取量就越大。另一方面,聚磷菌在厌氧段释放磷所产生的能量,主要用于其吸收进水中低分子有机基质合成PHB储存在体内,以作为其在厌氧条件压抑环境下生存的基础。因此,进水中是否含有足够的有机基质提供给聚磷菌合成PHB,是关系到聚磷菌在厌氧条件下能否顺利生存的重要因素。一般认为,进水中BOD5/TP要大于15才能保证聚磷菌有足够的基质需求而获得良好的除磷效果。为此,有时可以采用部分进水和省去初次沉淀池的方法来获得除磷所需的BOD负荷。6.污泥龄。由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此剩余污泥量的多少将决定系统的除磷效果。而污泥龄的长短对污泥的摄磷作用及剩余污泥的排放量有着直接的影响。一般来说,污泥龄越短,污泥含磷量越高,排放的剩余污泥量就越多,越可以取得较好的脱磷效果。短的污泥龄还有利于好氧段控制硝化作用的发生而利于厌氧段充分释磷,因此,仅以除磷为目的的污水处理系统中,一般宜采用较短的污泥龄。但过短的污泥龄不仅会影响出水的BOD5和COD,甚至会使出水的BOD5和COD达不到要求。以除磷为目的的生物处理工艺,污泥龄一般控制在3.5~7d。一般来说,厌氧区的停留时间越长,除磷效果越好。但过长的停留时间并不会太多地提高除磷效果,而且会有利于丝状菌的生长,使污泥的沉淀性能恶化,因此厌氧段的停留时间不宜过长。剩余污泥的处理方法也会对系统的除磷效果产生影响,因为污泥浓缩池中呈厌氧状态会造成聚磷菌的释磷,使浓缩池上清液和污泥脱水液中含有高浓度的磷,因此有必要采取合适的污泥处理方法,避免磷的重新释放。

    2018-10-11

  • 扫描关注微信

  • 工作时间
    9:00-17:00

  • 电话
    0592-5889902